Full Content is available to subscribers

Subscribe/Learn More  >

Simulation of Fatigue Crack Initiation in Heat Affected Zone Microstructure Using Crystal-Plasticity Finite Element Method

[+] Author Affiliations
Takashi Hiraide, Satoshi Igi, Tetsuya Tagawa, Rinsei Ikeda

JFE Steel Corporation, Chiba, Japan

Seiichiro Tsutsumi

Osaka University, Osaka, Japan

Paper No. PVP2017-65947, pp. V06AT06A081; 7 pages
  • ASME 2017 Pressure Vessels and Piping Conference
  • Volume 6A: Materials and Fabrication
  • Waikoloa, Hawaii, USA, July 16–20, 2017
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5799-1
  • Copyright © 2017 by ASME


It is well known that fatigue fracture of welded joints can depend on many factors such as residual stress, stress concentration and an inhomogeneous microstructure in the HAZ (Heat Affected Zone). Some solutions to improve fatigue properties, for example, hammer peening (1), have been developed to mitigate effects related to stress. Improvement from mechanical view point is not only applied, but optimized microstructure design of the base metal and HAZ should be also considered. However, microstructural effects on fatigue crack initiation behavior have not been fully understood because systematic experimental evaluation of them takes much efforts with difficulty. An analytical method is a useful idea to specify the optimum microstructure against fatigue crack initiation before experimental examinations. CP-FEM (Crystal-Plasticity Finite Element Method) is expected to describe fatigue crack initiation behavior, because it can express strain localizations caused by an inhomogeneous microstructure.

In the present study, a simulation model using CP-FEM is developed to describe strain localizations under cyclic loading. Microstructural effects on plastic strain localization and accumulation were investigated by changing microstructural factors.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In