Full Content is available to subscribers

Subscribe/Learn More  >

Closed-Form Stress Intensity Factor Solutions for Deep Surface Cracks in Cylinders Subjected to Global Bending

[+] Author Affiliations
Kisaburo Azuma, Yinsheng Li, Kunio Hasegawa

Japan Atomic Energy Agency (JAEA), Tokai-mura, Ibaraki, Japan

Do Jun Shim

Structural Integrity Associates, Inc., San Jose, CA

Paper No. PVP2017-65198, pp. V06AT06A072; 7 pages
  • ASME 2017 Pressure Vessels and Piping Conference
  • Volume 6A: Materials and Fabrication
  • Waikoloa, Hawaii, USA, July 16–20, 2017
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5799-1
  • Copyright © 2017 by ASME


Materials made of alloy 82/182/600 used in pressurized water reactors are known to be susceptible to primary water stress corrosion cracking. The depth, a, of flaws due to primary water stress corrosion cracking can be larger than half of the crack length c, which is referred to as cracks with large aspect ratios. The stress intensity factor solution for cracks plays an important role to predict crack propagation and failure. However, Section XI of the ASME Boiler and Pressure Vessel Code does not provide the solutions for cracks with large aspect ratio.

This paper presents the stress intensity factor solutions for circumferential surface cracks with large aspect ratios in cylinders under global bending loads. Finite element solutions were used to fit closed-form equations with influence coefficients Ggb. The closed-form solutions for coefficient Ggb were developed at the deepest points and the surface points of the cracks with aspect ratio a/c ranged from 1.0 to 8.0.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In