0

Full Content is available to subscribers

Subscribe/Learn More  >

Features Testing of Stud Material Under Low Constraint Ductile Tearing

[+] Author Affiliations
P. James, P. Birkett, C. Madew

Amec Foster Wheeler, Warrington, UK

M. Jackson

Rolls Royce, Derby, UK

Paper No. PVP2017-65351, pp. V06AT06A028; 10 pages
doi:10.1115/PVP2017-65351
From:
  • ASME 2017 Pressure Vessels and Piping Conference
  • Volume 6A: Materials and Fabrication
  • Waikoloa, Hawaii, USA, July 16–20, 2017
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5799-1
  • Crown Copyright © 2017

abstract

Defect tolerance assessments are carried out to support the demonstration of structural integrity for high integrity components such as nuclear reactor pressure vessels. These assessments often consider surface-breaking defects and assess Stress Intensity Factors (SIFs) at both the surface and deepest points. This can be problematic when there is a high stress at the surface, for example due to the stress concentration at the root of a screw thread. In the past this has led to the development of complex and costly 3D finite element analyses to calculate more accurate SIFs, and still resulting in small apparent limiting defect sizes based on initiation at the surface point.

Analysis has been carried out along with supporting materials testing, to demonstrate that the increased SIF at the surface point is offset by a reduction in crack-tip constraint, such that the material exhibits a higher apparent fracture toughness. This enables a more simplistic assessment which reduces the effective SIF at the surface such that only the SIF at the deepest point needs to be considered. This then leads to larger calculated limiting defect sizes. This in turn leads to a more robust demonstration of structural integrity, as the limiting defect sizes are consistent with the capability of non-destructive examination techniques.

The high SIF at the surface location, and the concomitant reduction in crack-tip constraint, meant that it was not possible to demonstrate the material response with conventional tests, such as those using shallow-notched bend specimens. Instead it was necessary to develop modified specimens in which semielliptical defects were introduced into a geometry which replicated the notch acuity at the root of a screw thread. These feature tests were used to demonstrate the principle, prior to testing with more conventional specimens to fit more accurately the parameters required to represent the material response in a defect tolerance assessment.

Margins in defect tolerance assessments are usually measured against the initiation of tearing, even though the final failure for the material may occur at a higher load following stable crack extension. This work measured and assessed the benefit of reduced crack-tip constraint on both the point of initiation and on the development of the tearing resistance curve. This demonstrated that the effect of constraint was valid with tearing for this material and that there was additional margin available beyond the onset of tearing. The feature test geometry also provided evidence of the tearing behaviour at the surface and deepest points of a surrogate component under representative loading.

This paper provides an overview of the range of tests performed and the post-test interpretation performed in order to provide the R6 α and k constraint parameters.

Crown Copyright © 2017
Topics: Testing

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In