Full Content is available to subscribers

Subscribe/Learn More  >

Theoretical Analysis of Free Vibrations Based on a New High Order Shell Theory for Cylindrical Shells Conveying Fluid

[+] Author Affiliations
Ming Ji, Kazuaki Inaba

Tokyo Institute of Technology, Tokyo, Japan

Paper No. PVP2017-65604, pp. V005T11A015; 10 pages
  • ASME 2017 Pressure Vessels and Piping Conference
  • Volume 5: High-Pressure Technology; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD); SPC Track for Senate
  • Waikoloa, Hawaii, USA, July 16–20, 2017
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5798-4
  • Copyright © 2017 by ASME


The natural frequencies of free vibrations for thick cylindrical shells with clamped-clamped ends conveying fluid are investigated. Equations of motion and boundary conditions are derived by Hamilton’s principle based on the new high order shell theory. The hydrodynamic force is derived from the linearized potential flow theory. Besides, fluid pressure acting on the shell wall is gotten by the assumption of non-penetration condition. The out-of-plane and in-plane vibrations are coupled together due to the existence of fluid-solid-interaction (FSI). Under the assumption of harmonic motion, the dispersion relationships are presented. Using the method of frequency sweeping, the natural frequencies of symmetric modes and asymmetric modes corresponding to each flow velocity are found by satisfying the dispersion relationship equations and boundary conditions. Several numerical examples with different flow velocities and thickness are presented compared with previous thin shell theory and FEM results and show reasonable agreement. The effects of thickness are discussed.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In