Full Content is available to subscribers

Subscribe/Learn More  >

Nonlinear Buckling Analysis of Cylindrical Shell With Normal Nozzle Subjected to Axial Loads

[+] Author Affiliations
Qianyu Shi, Zhijian Wang, Hui Tang

Harbin Boiler Co., Ltd., Harbin, China

Paper No. PVP2017-65724, pp. V03BT03A030; 5 pages
  • ASME 2017 Pressure Vessels and Piping Conference
  • Volume 3B: Design and Analysis
  • Waikoloa, Hawaii, USA, July 16–20, 2017
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5795-3
  • Copyright © 2017 by ASME


Design of Large-scale and light-weight pressure vessels is an inexorable trend of industrial development. These large thin-walled vessels are prone to buckling failure when subjected to compression loads and other destabilizing loads. Thus, buckling analysis is a primary and even the most important part of design for these pressure vessels. Local buckling failure will probably occur when cylindrical shells with nozzle subjected to axial loads. In this paper, a FE model of cylindrical shell with a normal nozzle is established in ANSYS Workbench. The bifurcation buckling analysis is performed by using an elastic-plastic stress analysis with the effect of nonlinear geometry, and a collapse analysis is performed with an initial imperfection. The axial buckling loads are obtained by these two types of method. Some issues about nonlinear buckling analysis are discussed through this study case.

Copyright © 2017 by ASME
Topics: Stress , Nozzles , Pipes , Buckling



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In