0

Full Content is available to subscribers

Subscribe/Learn More  >

Leak Rates of Gasses Through Packing Seals With Different Analytical Approaches

[+] Author Affiliations
Ali Salah Omar Aweimer, Abdel-Hakim Bouzid, Mehdi Kazeminia

École de Technologie Supérieure, Montreal, QC, Canada

Paper No. PVP2017-65017, pp. V002T02A023; 8 pages
doi:10.1115/PVP2017-65017
From:
  • ASME 2017 Pressure Vessels and Piping Conference
  • Volume 2: Computer Technology and Bolted Joints
  • Waikoloa, Hawaii, USA, July 16–20, 2017
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5793-9
  • Copyright © 2017 by ASME

abstract

Predicting leakage in packed stuffing boxes is a major engineering challenge to designers and end users. Due to the different working conditions and material products, the determination of the flow regime present in packing rings is not a straightforward task to predict. This paper presents a study on the ability of micro channel flow models to predict leak rates through packing rings made of soft materials such as graphite. A methodology based on the experimental characterization of the porosity parameters is developed to predict leak rates at different compression stress levels. Three different models are compared to predicate the leakage, where the diffusive and second order flow models are derived from Naiver-Stokes equations and incorporate the boundary conditions of an intermediate flow regime to cover the wide range of leak rate levels. The lattice model is based on porous media of packing rings as packing bed (Dp). The flow porosity parameters (Rc,Dp) of the micro channels assumed to simulate the leak paths present in the packing are obtained experimentally. The predicted leak rates from different gasses (He, N2, Ar) are compared to those measured experimentally, in which the set of packing rings is mainly subjected to different gland stresses and pressures.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In