Full Content is available to subscribers

Subscribe/Learn More  >

Is it Possible to Get-Rid of S-N Curve for Fatigue Evaluation?: A Fully Mechanistic Model of 316SS Reactor Steel for Fatigue Life Evaluation

[+] Author Affiliations
Bipul Barua, Subhasish Mohanty, William K. Soppet, Saurindranath Majumdar, Krishnamurti Natesan

Argonne National Laboratory, Lemont, IL

Paper No. PVP2017-65890, pp. V01AT01A027; 8 pages
  • ASME 2017 Pressure Vessels and Piping Conference
  • Volume 1A: Codes and Standards
  • Waikoloa, Hawaii, USA, July 16–20, 2017
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5790-8
  • Copyright © 2017 by ASME


The present methods for fatigue life evaluation of nuclear reactor components have large uncertainties due to the overdependence on approaches that involve empirical fatigue life estimation, such as use of test-based curves of stress/strain versus life (S∼N) and Coffin-Manson type empirical relations. To reduce the uncertainty in fatigue life evaluation, we are trying to develop a fully mechanistic modeling approach. The aim is to capture the time/cycle-dependent material ageing behavior such as stress hardening/softening through multi-axial stress-strain evolution of the components based on which the life of the component can be predicted. In this paper, we introduce an implementation of the ANL developed evolutionary cyclic plasticity model for 316 SS reactor steel within the commercial finite element (FE) software ABAQUS. A user subroutine is developed to enable the incorporation of the ANL developed evolutionary cyclic plasticity model [1] into ABAQUS. The FE model, developed in this work, can be used for predicting the time-dependent stress hardening/softening of 3D structure. A strain-controlled constant amplitude fatigue experiment scenario is 3D modeled using the developed ABAQUS based FE modeling framework and is verified through experimental data.

Copyright © 2017 by ASME
Topics: Fatigue , Steel , Fatigue life



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In