0

Full Content is available to subscribers

Subscribe/Learn More  >

Development and Commissioning of a Supersonic Blow Down Wind Tunnel for Educational Purposes

[+] Author Affiliations
Maximilian Passmann, Stefan aus der Wiesche

Muenster University of Applied Sciences, Steinfurt, Germany

Paper No. FEDSM2017-69196, pp. V002T17A002; 10 pages
doi:10.1115/FEDSM2017-69196
From:
  • ASME 2017 Fluids Engineering Division Summer Meeting
  • Volume 2, Fora: Cavitation and Multiphase Flow; Advances in Fluids Engineering Education
  • Waikoloa, Hawaii, USA, July 30–August 3, 2017
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5808-0
  • Copyright © 2017 by ASME

abstract

A cost-effective test rig is presented that allows for the experimental investigation of supersonic flows for educational purposes. The individual units for the test rig were designed and built by students as part of their degrees. The test rig allows for operating times up to 10 seconds and features a nozzle test section, that can house different test objects. The divergent part of the de Laval nozzle geometry is designed using the method of characteristics for planar two-dimensional supersonic flow. State of the art 3D printing technology has been utilized to manufacture the nozzle geometry. Both optical and pneumatic measurement techniques have been adopted for the current setup. A z-type schlieren setup with two parabolic mirrors is used to perform flow visualization. The entire run can be recorded with a digital high speed camera. Stagnation pressure and temperature are measured in the pressure reservoir. Measurements are used to demonstrate basic thermodynamic effects such as the depressurization of gas-filled pressure vessels. Schlieren photography is used to graphically derive the Mach number and some aspects of Mach waves, oblique shock waves, and expansion waves are discussed. Finally, some effects of surface roughness on the flow field are addressed in this paper. Initial tests with the untreated nozzle geometry led to a fine pattern of very weak oblique shock waves in the supersonic part of the nozzle, that were caused by the finite layer thickness of the printer.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In