Full Content is available to subscribers

Subscribe/Learn More  >

Modeling of Cavitation Induced Fuel Atomization and Breakup Processes

[+] Author Affiliations
Bolin Zhao

University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai, China

C. P. Chen

University of Alabama, Huntsville, AL

Paper No. FEDSM2017-69499, pp. V002T13A006; 12 pages
  • ASME 2017 Fluids Engineering Division Summer Meeting
  • Volume 2, Fora: Cavitation and Multiphase Flow; Advances in Fluids Engineering Education
  • Waikoloa, Hawaii, USA, July 30–August 3, 2017
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5808-0
  • Copyright © 2017 by ASME


Recent experimental and modeling studies have indicated that turbulence and cavitation behaviors within a realistic fuel injector have significant effects on the liquid atomization and spray processes. In addition to the breakup process induced by aerodynamic force at the liquid/gas interface, the effects of flow characteristics including turbulence and cavitation inside the injector nozzle on atomization have been shown to be important. The cavitation within the injector is complicated by the turbulent flow under large pressure gradient and geometry of the injector orifice. We have previously developed the “T-blob” and “T-TAB” model, for liquid fuel primary and secondary breakup predictions respectively, to account for liquid turbulence effects within the injector. The objective of this study is to further account for the cavitation effect in the atomization process of a cylindrical liquid jet. In the primary breakup model, the level of the turbulence effect on the liquid breakup depends on the characteristic scales and the initial flow conditions. These scales are further modified to include the cavitation effect. The drop size formed is estimated based on the energy distribution among wave, turbulence and cavitation modes. This paper describes theoretical development of the current model. Both non-evaporating and evaporating spray cases will be investigated to validate the newly developed cavitation-induced atomization model.

Copyright © 2017 by ASME
Topics: Fuels , Cavitation , Modeling



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In