Full Content is available to subscribers

Subscribe/Learn More  >

Comparative Calculations of TROI TS-2 and TS-3 Steam Explosion Experiments With TEXAS-V

[+] Author Affiliations
Taehoon Kim, Sukyoung Pak, Yongjin Cho

Korea Institute of Nuclear Safety, Daejeon, Republic of Korea

Paper No. FEDSM2017-69408, pp. V01CT23A013; 5 pages
  • ASME 2017 Fluids Engineering Division Summer Meeting
  • Volume 1C, Symposia: Gas-Liquid Two-Phase Flows; Gas and Liquid-Solid Two-Phase Flows; Numerical Methods for Multiphase Flow; Turbulent Flows: Issues and Perspectives; Flow Applications in Aerospace; Fluid Power; Bio-Inspired Fluid Mechanics; Flow Manipulation and Active Control; Fundamental Issues and Perspectives in Fluid Mechanics; Transport Phenomena in Energy Conversion From Clean and Sustainable Resources; Transport Phenomena in Materials Processing and Manufacturing Processes
  • Waikoloa, Hawaii, USA, July 30–August 3, 2017
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5806-6
  • Copyright © 2017 by ASME


During a severe accident, contact of the molten corium with the coolant water may cause an energetic steam explosion which is a rapid increase of explosive vaporization by transfer to the water of a significant part of the energy in the corium melt. This steam explosion has been considered as an adverse effect when the water is used to cool the molten corium and could threaten reactor vessel, reactor cavity, containment integrity. In this study, TROI TS-2 and TS-3 experiments as part of the OECD/SERENA-2 project were analyzed with TEXAS-V. Input parameters were based on actual TROI experiment data. In mixing simulations, calculated results were compared to melt front behavior, void fraction in trigger time and other parameters in experiment results. In explosion simulations, corresponding to TROI experiments an external triggering was employed at the moment that melt front reached heights of 0.4 m. Calculated results of peak pressure and impulse at the bottom were compared with TROI experiment results. Melt front behaviors of the melt was different from the experimental results in both TS-2 and TS-3. Void fraction in triggering time in TS-2 was in good agreement with the experiment results and in TS-3 was slightly overestimated. The peak pressure and impulse at bottom were successfully predicted by TEXAS-V. These calculations will allow establishing whether the limitations and differences observed in the simulations of the experiments are important for the reactor case.

Copyright © 2017 by ASME
Topics: Explosions , Steam



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In