0

Full Content is available to subscribers

Subscribe/Learn More  >

A VoF-Based Consistent Mass-Momentum Transport for Two-Phase Flow Simulations

[+] Author Affiliations
Annagrazia Orazzo, Isabelle Lagrange, Jean-Luc Estivalézes, Davide Zuzio

ONERA, Toulouse, France

Paper No. FEDSM2017-69190, pp. V01CT16A007; 11 pages
doi:10.1115/FEDSM2017-69190
From:
  • ASME 2017 Fluids Engineering Division Summer Meeting
  • Volume 1C, Symposia: Gas-Liquid Two-Phase Flows; Gas and Liquid-Solid Two-Phase Flows; Numerical Methods for Multiphase Flow; Turbulent Flows: Issues and Perspectives; Flow Applications in Aerospace; Fluid Power; Bio-Inspired Fluid Mechanics; Flow Manipulation and Active Control; Fundamental Issues and Perspectives in Fluid Mechanics; Transport Phenomena in Energy Conversion From Clean and Sustainable Resources; Transport Phenomena in Materials Processing and Manufacturing Processes
  • Waikoloa, Hawaii, USA, July 30–August 3, 2017
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5806-6
  • Copyright © 2017 by ASME

abstract

The most part of two-phase flows relevant to industrial applications is characterized by high density ratios that make numerical simulations of such kind of flows still challenging in particular when the interface assumes complex shape and is distorded by high shear. In this paper a new strategy, to overcome the numerical instabilities induced by the large densities/shears at the interface, is described for staggered cartesian grids. It consists in a consistent mass-momentum advection algorithm where mass and momentum transport equations are solved in the same control volumes. The mass fluxes are evaluated through the Volume-of-Fluid color function and directly used to calculate momentum convective term. Two and three-dimensional high-density test cases (the density ratio goes from 103 to 109) are presented. The new algorithm shows signifcantly improvements compared to standard advection methods therefore suggesting the applicability to the complete atomization process simulations.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In