0

Full Content is available to subscribers

Subscribe/Learn More  >

Metal Foam Microchannel Heat Exchangers for Cooling of Fuel Cells and Flow Batteries

[+] Author Affiliations
Anthony Santamaria, Jingru Zhang

Western New England University, Springfield, MA

Paper No. FEDSM2017-69358, pp. V01BT10A009; 7 pages
doi:10.1115/FEDSM2017-69358
From:
  • ASME 2017 Fluids Engineering Division Summer Meeting
  • Volume 1B, Symposia: Fluid Measurement and Instrumentation; Fluid Dynamics of Wind Energy; Renewable and Sustainable Energy Conversion; Energy and Process Engineering; Microfluidics and Nanofluidics; Development and Applications in Computational Fluid Dynamics; DNS/LES and Hybrid RANS/LES Methods
  • Waikoloa, Hawaii, USA, July 30–August 3, 2017
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5805-9
  • Copyright © 2017 by ASME

abstract

A metal foam filled microchannel cooling device for polymer-electrolyte-membrane fuel cell (PEFC) and flow batteries was investigated experimentally and numerically in this study. Nickel foam was selected due to its high conductivity, large surface area, low density and low cost. The properties of the nickel foam were determined analytically and experimentally. Experiments were conducted to obtain pressure drop at various Reynolds numbers for metal foams of varying porosities. The experimental data was used to provide inputs for the numerical model. A modeling approach for flow in a metal foam filled channel was validated with the available data. The validated model was then used to analyze the heat transfer and fluid flow characteristics of the metal foam microchannel. Two different locations of the cooling device with respect to the PEF C stack were investigated. The thermal resistance and pressure drop change with Reynolds number are presented. Significant temperature drop was observed with the metal foam microchannel design. The modeling results can be used to guide the direction of future experiments.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In