0

Full Content is available to subscribers

Subscribe/Learn More  >

Transient Pressure Pulsations of a Model Pump-Turbine During Power Failure

[+] Author Affiliations
Jinhong Hu, Wei Zeng, Jiandong Yang, Renbo Tang

Wuhan University, Wuhan, China

Paper No. FEDSM2017-69133, pp. V01AT05A009; 7 pages
doi:10.1115/FEDSM2017-69133
From:
  • ASME 2017 Fluids Engineering Division Summer Meeting
  • Volume 1A, Symposia: Keynotes; Advances in Numerical Modeling for Turbomachinery Flow Optimization; Fluid Machinery; Industrial and Environmental Applications of Fluid Mechanics; Pumping Machinery
  • Waikoloa, Hawaii, USA, July 30–August 3, 2017
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5804-2
  • Copyright © 2017 by ASME

abstract

Pump-turbine can operate in either pump mode or turbine mode. The quick response to load changes as well as the ability to store energy makes it essential to the stability of power grid. When a pump-turbine works in different condition, flow-induced instabilities occur, including Rotor Stator Interaction (RSI) between the runner and vanes, vortex formations and back flow regions. To understand these complicated flow dynamics, experimental and numerical investigations have been conducted by many researchers. Among these researches, many experiments on model test rigs are mainly focused on steady state, and knowledge for instabilities during transients is still lacking. In this paper, power failure experiments with constant guide van opening are conducted on an open-loop test rig. During the process, the operating point of the pump-turbine in the 4 quadrant characteristics moves from pump region through the brake region, turbine region to turbine brake region. Finally the pump-turbine settled down at runaway rotational speed. In our experiments, flow rate, rotational speed, torque, pressure in the spiral casing and the draft tube inlet are measured. Especially, dynamic pressure sensors mounted in the guide vane channels are used to measure transient pressure pulsations. Measured data are analyzed in both time domain and frequency domain. Results indicate that during power failure pressure pulsations in the vane channels vary significantly with the operating conditions. In the pump region, pressure pulsations are mainly composed of RSI. In the brake region, intensive stochastic noises occur, and the amplitude of RSI rises. In the turbine region, the magnitude of pressure pulsations drops sharply as the noise intensity goes down. In the turbine brake region, significant noises appear, and the amplitude of RSI increases dramatically.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In