Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Baffles in Between Stages on Performance and Flow Characteristics of a Two-Stage Split Case Centrifugal Pump

[+] Author Affiliations
Yiyun Wang, Ji Pei, Shouqi Yuan, Wenjie Wang

Jiangsu University, Zhenjiang, China

Paper No. FEDSM2017-69121, pp. V01AT05A007; 7 pages
  • ASME 2017 Fluids Engineering Division Summer Meeting
  • Volume 1A, Symposia: Keynotes; Advances in Numerical Modeling for Turbomachinery Flow Optimization; Fluid Machinery; Industrial and Environmental Applications of Fluid Mechanics; Pumping Machinery
  • Waikoloa, Hawaii, USA, July 30–August 3, 2017
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5804-2
  • Copyright © 2017 by ASME


Two-stage split case centrifugal pumps play an important role in large flow rate and high lift water transfer situations. To investigate the influence of baffles in between stages on the performance and internal flow characteristics, the unsteady simulations for the prototype pump were carried out by solving the three-dimensional Reynolds-averaged Navier-Stokes equations with a shear stress transport (SST) turbulence model. The structured grids were generated for the whole flow passage. The calculated performance results were verified by the experimental measurements. The entropy production method based on numerical simulation was applied to analyze the distribution and mechanism of flow losses. The results show that the turbulence dissipation is the dominant flow loss, and the viscous dissipation can be neglected. The baffles can reduce the turbulence dissipation power obviously and can improve the hydraulic efficiency by maximum 5%, especially under QBEP and over-load conditions. The baffles have the greatest effect on the hydraulic losses in the double suction impeller., because they change the flow characteristics in the channels between the first stage impeller and the double suction impeller, affecting the inflow condition dramatically for the impeller. The study can give a reference to optimize the design of the two-stage split case centrifugal pump for high efficiency.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In