0

Full Content is available to subscribers

Subscribe/Learn More  >

Measured Static and Rotordynamic Characteristics of a Smooth-Stator/Grooved-Rotor Liquid Annular Seal

[+] Author Affiliations
J. Alex Moreland, Dara W. Childs

Texas A&M University, College Station, TX

Joshua T. Bullock

Valero Energy Corporation, Port Arthur, TX

Paper No. FEDSM2017-69036, pp. V01AT05A004; 8 pages
doi:10.1115/FEDSM2017-69036
From:
  • ASME 2017 Fluids Engineering Division Summer Meeting
  • Volume 1A, Symposia: Keynotes; Advances in Numerical Modeling for Turbomachinery Flow Optimization; Fluid Machinery; Industrial and Environmental Applications of Fluid Mechanics; Pumping Machinery
  • Waikoloa, Hawaii, USA, July 30–August 3, 2017
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5804-2
  • Copyright © 2017 by ASME

abstract

Electric submersible pumps utilize grooved-rotor seals to reduce leakage and break up contaminants within the pumped fluid. Additionally, due to their decreased surface area (when compared to a smooth seal), grooved seals decrease the chance of seizure in the case of rotor-stator rubs. Despite their use in industry, the literature does not contain measurements for smooth-stator/circumferentially-grooved-rotor liquid annular seals.

This paper presents test results consisting of leakage measurements and rotordynamic coefficients for a smooth-stator/circumferentially-grooved-rotor liquid annular seal. Both static and dynamic performance for the grooved seal are investigated for various imposed pre-swirl ratios, static eccentricities, axial pressure drops, and running speeds. The grooved seals′ static and dynamic performance are compared to those of a smooth seal with identical length, diameter, and radial clearance.

Results show that adding grooves reduces leakage at lower speeds (less than 5 krpm) and higher axial pressure drops, but does little at higher speeds. The grooved seal’s direct stiffness is generally negative, which would be detrimental to pump rotordynamics. Furthermore, increasing pre-swirl increases the magnitude of cross-coupled stiffness and increases the whirl frequency ratio. When compared to the smooth seal, the grooved seal has smaller effective damping coefficients, indicative of worse stability characteristics.

Copyright © 2017 by ASME
Topics: Rotors , Stators

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In