0

Full Content is available to subscribers

Subscribe/Learn More  >

Influence of an Adaptive Blade System on Unsteady Flow Conditions in a 2D Compressor Cascade

[+] Author Affiliations
Julija Peter, David Konstantin Tilcher, Paul Uwe Thamsen

Technische Universitaet Berlin, Berlin, Germany

Robert Meyer

German Aerospace Center, Berlin, Germany

Paper No. FEDSM2017-69028, pp. V01AT05A003; 7 pages
doi:10.1115/FEDSM2017-69028
From:
  • ASME 2017 Fluids Engineering Division Summer Meeting
  • Volume 1A, Symposia: Keynotes; Advances in Numerical Modeling for Turbomachinery Flow Optimization; Fluid Machinery; Industrial and Environmental Applications of Fluid Mechanics; Pumping Machinery
  • Waikoloa, Hawaii, USA, July 30–August 3, 2017
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5804-2
  • Copyright © 2017 by ASME

abstract

The flow field inside a compressor is characterized by highly unsteady flow effects. Consequently, the performance of a compressor is significantly influenced by the complex flow field. Especially at off-design conditions, flow separation and tip clearance flow cause vortex structures and thus increased losses. The objective of this paper is to give an insight into the effect mechanism of the movable stator vanes as an adaptive system to affect unsteady flow conditions. The experiments were conducted in a stator cascade in a water channel at a Reynolds number of Re = 500 000. Inlet guide vanes with movable flaps were used to simulate the periodic variation of the inlet flow angle. As parameters, the mean stagger angle of the stator cascade as well as the phase shift between the sinusoidal movement of the stator and the inlet guide cascade were varied. By using the optical measurement technique High-Speed Particle Image Velocimetry (HS-PIV), the flow fields upstream and downstream of the stator cascade were captured. Overall, the results revealed that the loss coefficient is strongly dependent on the phase shift between the inlet guide cascade and the stator cascade. Using certain phase shifts, a reduction in losses of up to 20% was achieved by the movable stator cascade.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In