0

Full Content is available to subscribers

Subscribe/Learn More  >

Parametrization of High-Speed Train Streamline Shape

[+] Author Affiliations
Zhenxu Sun, Ye Zhang, Guowei Yang

Institute of Mechanics, Chinese Academy of Sciences, Beijing, China

Paper No. FEDSM2017-69167, pp. V01AT04A006; 8 pages
doi:10.1115/FEDSM2017-69167
From:
  • ASME 2017 Fluids Engineering Division Summer Meeting
  • Volume 1A, Symposia: Keynotes; Advances in Numerical Modeling for Turbomachinery Flow Optimization; Fluid Machinery; Industrial and Environmental Applications of Fluid Mechanics; Pumping Machinery
  • Waikoloa, Hawaii, USA, July 30–August 3, 2017
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5804-2
  • Copyright © 2017 by ASME

abstract

In the past decade, the high speed trains (HSTs) in China have experienced a booming development, with the design of CRH380A as a predominant example. A series of brand new HSTs have been developed with high aerodynamic performance, which includes the running resistance, the lift of the trailing car, pressure waves when trains pass by each other, aerodynamic noise in the far field, etc. In order to design HSTs with better aerodynamic performance, it is necessary to perform aerodynamic shape optimization, especially to optimize the streamline shape of HSTs. Parametrization is the basis for the whole optimization process, since good parametrization approach not only affects the optimization strategy, but also determines the design space and optimization efficiency. In the present paper, a series of work related to the streamline shape parametrization performed by the author in recent years have been introduced. Four different parametrization approaches have been exhibited, which are Local Shape Function method (LSF) and Free-Foam Deformation method (FFD), Modified Vehicle Modeling Function method (MVMF), Class function/Shape function Transformation method (CST). These methods could be categorized into two kinds: shape disturbance approach (LSF and FFD) and shape description approach (MVMF and CST). Among these four methods, some are developed by the authors while some are locally modified so as to meet the parametrization of the streamline shape. The detailed process of these four approaches are exhibited in the present paper and the characteristics of these four approaches are compared.

Copyright © 2017 by ASME
Topics: Shapes , Trains

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In