Full Content is available to subscribers

Subscribe/Learn More  >

Entropy Generation for Oscillatory Flow Inside Thermal-Lag Type Stirling Engine: Numerical Analysis

[+] Author Affiliations
Houda Hachem, Ramla Gheith, Sassi Ben Nasrallah

Université de Monastir, Monastir, Tunisia

Fethi Aloui

University of Valenciennes, Valenciennes, France

Paper No. FEDSM2017-69010, pp. V01AT04A001; 9 pages
  • ASME 2017 Fluids Engineering Division Summer Meeting
  • Volume 1A, Symposia: Keynotes; Advances in Numerical Modeling for Turbomachinery Flow Optimization; Fluid Machinery; Industrial and Environmental Applications of Fluid Mechanics; Pumping Machinery
  • Waikoloa, Hawaii, USA, July 30–August 3, 2017
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5804-2
  • Copyright © 2017 by ASME


The present paper investigates the heat characteristics of oscillatory piston-driven flow inside thermal-lag type Stirling engine. The geometry consists of a cylinder partially filled with a porous metal structure called regenerator, heated at the lateral wall on one side and cooled on the other side. Brinkman-Forchheimer-Lapwood extended Darcy model is assumed to simulate heat transfer within the regenerator.

A numerical model is used to evaluate average entropy generation rate in the regenerator depending on its characteristics (form factor Lr /Dr, porosity and material) and on the oscillatory flow characteristics (working fluid, rotational engine speed, hot end temperature and initial pressure). The output power of the thermal lag Stirling engine is estimated for different working conditions. Results show that, the two main contributors to entropy generation in the regenerator are: entropy due to heat transfer (imperfection loss, internal conduction loss) and entropy due to viscous friction. Regenerator design leading to minimum entropy generation was investigated.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In