0

Full Content is available to subscribers

Subscribe/Learn More  >

Unstable Flow Characteristics in S-Shaped Region of Pump-Turbine Runners With Large Blade Lean

[+] Author Affiliations
Zhe Ma, Baoshan Zhu, Cong Rao, Lei Tan

Tsinghua University, Beijing, China

Paper No. FEDSM2017-69275, pp. V01AT03A021; 11 pages
doi:10.1115/FEDSM2017-69275
From:
  • ASME 2017 Fluids Engineering Division Summer Meeting
  • Volume 1A, Symposia: Keynotes; Advances in Numerical Modeling for Turbomachinery Flow Optimization; Fluid Machinery; Industrial and Environmental Applications of Fluid Mechanics; Pumping Machinery
  • Waikoloa, Hawaii, USA, July 30–August 3, 2017
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5804-2
  • Copyright © 2017 by ASME

abstract

As the reversible pump-turbines operate in the S-shaped region, instability problems including backflow, vortex formation and rotating stall may appear. Previous researches studied instabilities at different guide vane opening (GVO) on their inception and evolution but few studies explored the effect of the blade lean at the leading edge. In present work, two runners tested by experiments, the runner A with a negative and the runner B with a positive blade lean at leading edge, were studied in CFD mode with a reduced scale model. Six operating points, namely, best efficiency point (OP#1), two points in the normal operating region (OP#2, OP#3), two points near runaway line (OP#4, OP#5) and a low discharge point in turbine brake (OP#6) were calculated for both runners. As the discharge reduces, the flow in the runners loses its symmetry and the efficiency becomes lower and lower. The flow of OP#1, OP#2 and OP#3 is healthy but slight separations locate near the inlet of the passages. At OP#4, obvious vortexes occupy the passages and the visible vortexes prevent the flow from entering the channels. The blockage generates strong backflow near the inlet of the runner. Moreover, the main backflow area locates near the hub for runner A while for runner B it is near the shroud. Unsteady vortex formation and rotating stall respectively exist at the near runaway points (OP#4 and OP#5) and low discharge point (OP#6). At these three points, the pressure fluctuations in the vaneless gap between the runner and guide vanes are very high and the amplitude shows a small difference between the two runners. Dramatic distinction appears on the frequency of the fluctuation. For both of the two runners, a peak corresponding to 70% fn, where fn is the runner rotating frequency, rises in the spectra of OP#4 and OP#5. This peak appears at all the monitors in the vaneless space at the same time standing for the unsteady vortex formation, which does not rotate with the blades. In addition, at OP#6, 40% and 50% fn are detected as the dominant frequencies for runner A and runner B respectively. In addition, the propagation of such two low frequency signal along the annulus in the vaneless space proves the existence of the rotating stalls.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In