0

Full Content is available to subscribers

Subscribe/Learn More  >

Research on Heat-Transfer and Cooling Performance of Gas Turbine Endwall

[+] Author Affiliations
Kazuto Kakio, Y. Kawata

Osaka Institute of Technology, Asahi-ku, Japan

Paper No. FEDSM2017-69245, pp. V01AT03A016; 7 pages
doi:10.1115/FEDSM2017-69245
From:
  • ASME 2017 Fluids Engineering Division Summer Meeting
  • Volume 1A, Symposia: Keynotes; Advances in Numerical Modeling for Turbomachinery Flow Optimization; Fluid Machinery; Industrial and Environmental Applications of Fluid Mechanics; Pumping Machinery
  • Waikoloa, Hawaii, USA, July 30–August 3, 2017
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5804-2
  • Copyright © 2017 by ASME

abstract

Recently, the number of gas turbine combined cycle plants is rapidly increasing in substitution of nuclear power plants. The turbine inlet temperature (TIT) is being constantly increased in order to achieve higher efficiency. Therefore, the improvement of the cooling technology for high temperature gas turbine blades is one of the most important issue to be solved.

In a gas turbine, the main flow impinging at the leading edge of the turbine blade generates a so called horseshoe vortex by the interaction of its boundary layer and generated pressure gradient at the leading edge. The pressure surface leg of this horseshoe vortex crosses the passage and reaches the blade suction surface, driven by the pressure gradient existing between two consecutive blades. In addition, this pressure gradient generates a crossflow along the endwall. This all results into a very complex flow field in proximity of the endwall. For this reason, burnouts tend to occur at a specific position in the vicinity of the leading edge. In this research, a methodology to cool the endwall of the turbine blade by means of film cooling jets from the blade surface is proposed. The cooling performance and heat transfer coefficient distribution is investigated using the transient thermography method. CFD analysis is also conducted to know the phenomena occurring at the end wall and calculate the heat transfer distribution.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In