Full Content is available to subscribers

Subscribe/Learn More  >

Aerodynamic Design and Optimization of Pipe Diffuser for a High-Loading Centrifugal Compressor

[+] Author Affiliations
Xi Yang, Dong-hai Jin, Xing-min Gui

Beihang University, Beijing, China

Paper No. FEDSM2017-69152, pp. V01AT02A006; 11 pages
  • ASME 2017 Fluids Engineering Division Summer Meeting
  • Volume 1A, Symposia: Keynotes; Advances in Numerical Modeling for Turbomachinery Flow Optimization; Fluid Machinery; Industrial and Environmental Applications of Fluid Mechanics; Pumping Machinery
  • Waikoloa, Hawaii, USA, July 30–August 3, 2017
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5804-2
  • Copyright © 2017 by ASME


Pipe diffuser draws more attentions these years as the stage pressure ratio and loads grow, since it is known that the pipe diffuser has a superior performance to the traditional vane diffuser as the diffuser inlet flow field is transonic or supersonic. Generally speaking, when the pressure ratio is high enough to give rise to the emergence of a critical cross-section, it would usually be in the diffuser, closing to the leading edge other than in the impeller. Therefore, the diffuser would have a significant impact on stage choke margin and its performance while be difficult to design and to match the impeller with satisfaction. To address the problem, a preliminary geometry design method for pipe diffuser is presented in this paper. In this paper, the performance and flow field analysis are based on numerical simulation carried out by Numeca, a commercial simulation software. For verified the calculated results′ reliability and grid independence, corresponding calculations and comparisons are conducted and discussed. Then, the performance of stage with pipe diffuser is compared with the stage with vane diffuser. Next, the specific effects of incidence on the performance and flow field are analyzed and discussed respectively. At last, an optimized aerodynamic structure of pipe diffuser is presented. As shown in the CFD results, the stage peak isentropic efficiency can reach up to 83.65% with the stage total pressure ratio slightly increased from 6.50 to 6.78, which means 4.29% of isentropic efficiency was raised by substituting the pipe diffuser for the vane diffuser.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In