Full Content is available to subscribers

Subscribe/Learn More  >

Vortical Flow Structure of Hub-Corner Separation in a Stator Cascade of a Multi-Stage Transonic Axial Compressor

[+] Author Affiliations
Seishiro Saito, Masato Furukawa, Kazutoyo Yamada, Yuki Tamura

Kyushu University, Motooka, Japan

Akinori Matsuoka, Naoyuki Niwa

Kawasaki Heavy Industries, Ltd., Kawasaki, Japan

Paper No. FEDSM2017-69116, pp. V01AT02A004; 7 pages
  • ASME 2017 Fluids Engineering Division Summer Meeting
  • Volume 1A, Symposia: Keynotes; Advances in Numerical Modeling for Turbomachinery Flow Optimization; Fluid Machinery; Industrial and Environmental Applications of Fluid Mechanics; Pumping Machinery
  • Waikoloa, Hawaii, USA, July 30–August 3, 2017
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5804-2
  • Copyright © 2017 by ASME


In this study, the hub-corner separation in a multi-stage transonic axial compressor has been investigated using a large-scale detached eddy simulation (DES) with about 4.5 hundred million computational cells. The complicated flow field near the hub wall in a stator with partial tip clearances was analyzed by data mining techniques extracting important flow phenomena from the DES results. The data mining techniques applied in the present study include vortex identification based on the critical point theory and topological data analysis of the limiting streamline pattern visualized by the line integral convolution (LIC) method.

It is found from the time-averaged flow field in the first stator that the hub-corner separation vortex formed near the solid part of the stator tip interacts with the leakage flow and secondary flow on the hub wall, resulting in a complicated vortical flow field. Near the leading edge of the stator, the leakage flow from the front partial clearance generates the tip leakage vortex, which produces loss from the leading edge to 10 percent chord position. At the mid-chord, the hub-corner separation vortex suffers a breakdown, resulting in the widespread huge loss production. It is shown from limiting streamlines on the suction surface of the stator that a reverse flow region expands radially from the solid part of the stator tip toward the downstream. From 50 percent chord position to the trailing edge of the stator, the leakage flow through the rear partial clearance interacts with the secondary flow on the hub wall. The leakage vortex generated along the rear partial clearance becomes a major loss factor there.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In