0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Analysis of a Centrifugal Fan for a Road Sweeper

[+] Author Affiliations
Xiaoxuan Chen, Mingyang Yang, Kangyao Deng

Shanghai Jiaotong University, Shanghai, China

Yunlong Bai

Fujian Longma Environmental Sanitation Equipment Co. Ltd., Longyan, China

Paper No. FEDSM2017-69103, pp. V01AT02A001; 10 pages
doi:10.1115/FEDSM2017-69103
From:
  • ASME 2017 Fluids Engineering Division Summer Meeting
  • Volume 1A, Symposia: Keynotes; Advances in Numerical Modeling for Turbomachinery Flow Optimization; Fluid Machinery; Industrial and Environmental Applications of Fluid Mechanics; Pumping Machinery
  • Waikoloa, Hawaii, USA, July 30–August 3, 2017
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5804-2
  • Copyright © 2017 by ASME

abstract

Road sweeper is the widely-employed machine to clear up garbage and dust on streets. Its performance has profound influence on the reduction of fuel consumption and hence CO2 emission. The key component of a road sweeper is a centrifugal fan which produces suction force for clearing. Therefore, the performance of this device has direct impact on fuel economy of the machine. This paper targets at the performance analysis of a centrifugal fan in a commercial road sweeper. Firstly, the performance and flow field of the centrifugal fan are analyzed by computational fluid dynamics (CFD) method. The breakdown of the flow loss in the fan shows that the volute and the impeller are major components contributing to flow loss in the fan. The flow at the inlet of the impeller is highly distorted due the interaction among the asymmetrical inlet duct, the leakage and the volute tongue. Because of the interaction, flow passages near the tongue are the ones with the highest flow loss. Moreover, the flow velocity entering the volute is considerably high which thus results in high flow loss in the volute. Finally, based on the flow field analysis, an inlet duct with round shape is designed preliminarily and simulated together with the centrifugal fan. The results show that the efficiency can be improved by more than 4% compared with the original configuration due to the alleviation of the interaction.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In