0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Study of a Single Microchannel Flow Under Non-Uniform Heat Flux

[+] Author Affiliations
Ahmed Eltaweel, Abdulla Baobeid, Ibrahim Hassan

Texas A&M University at Qatar, Doha, Qatar

Paper No. HT2017-4795, pp. V002T14A006; 7 pages
doi:10.1115/HT2017-4795
From:
  • ASME 2017 Heat Transfer Summer Conference
  • Volume 2: Heat Transfer Equipment; Heat Transfer in Multiphase Systems; Heat Transfer Under Extreme Conditions; Nanoscale Transport Phenomena; Theory and Fundamental Research in Heat Transfer; Thermophysical Properties; Transport Phenomena in Materials Processing and Manufacturing
  • Bellevue, Washington, USA, July 9–12, 2017
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5789-2
  • Copyright © 2017 by ASME

abstract

Non-uniform heat fluxes are commonly observed in thermo-electronic devices that require distinct thermal management strategies for effective heat dissipation and robust performance. The limited research available on non-uniform heat fluxes focus mostly on microchannel heat sinks while the fundamental component, i.e. a single microchannel, has received restricted attention. In this work, an experimental setup for the analysis of variable axial heat flux is used to study the heat transfer in a single microchannel with fully developed flow under the effect of different heat flux profiles. Initially a hot spot at different locations, with a uniform background heat flux, is studied at different Reynolds numbers while varying the maximum heat fluxes in order to compute the heat transfer in relation to its dependent variables. Measurements of temperature, pressure, and flow rates at a different locations and magnitudes of hot spot heat fluxes are presented, followed by a detailed analysis of heat transfer characteristics of a single microchannel under non-uniform heating. Results showed that upstream hotspots have lower tube temperatures compared to downstream ones with equal amounts of heat fluxes. This finding can be of importance in enhancing microchannel heat sinks effectiveness in reducing maximum wall temperatures for the same amount of heat released, by redistributing spatially fluxes in a descending profile.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In