0

Full Content is available to subscribers

Subscribe/Learn More  >

Multiscale Simulation of Surface Nanostructure Effect on Bubble Nucleation

[+] Author Affiliations
Yijin Mao, Bo Zhang, Chung-Lung Chen, Yuwen Zhang

University of Missouri, Columbia, MO

Paper No. HT2017-5071, pp. V002T13A010; 9 pages
doi:10.1115/HT2017-5071
From:
  • ASME 2017 Heat Transfer Summer Conference
  • Volume 2: Heat Transfer Equipment; Heat Transfer in Multiphase Systems; Heat Transfer Under Extreme Conditions; Nanoscale Transport Phenomena; Theory and Fundamental Research in Heat Transfer; Thermophysical Properties; Transport Phenomena in Materials Processing and Manufacturing
  • Bellevue, Washington, USA, July 9–12, 2017
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5789-2
  • Copyright © 2017 by ASME

abstract

Effects of nanostructured defects of copper solid surface on the bubble growth in liquid argon have been investigated through a hybrid atomistic-continuum method. The same solid surfaces with five different nanostructures, namely, wedge defect, deep rectangular defect (R-I), shallow rectangular defect (R-II), small rectangular defect (R-III) and no defect, have been modeled at molecular level. The liquid argon is placed on top of the hot solid copper with superheat of 30 K after equilibration is achieved with CFD-MD coupled simulation. Phase change of argon on five nanostructures has been observed and analyzed accordingly. The results showed that the solid surface with wedge defect tends to induce a nano-bubble relatively more easily than the others, and the larger the size of the defect is the easier the bubble generate.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In