Full Content is available to subscribers

Subscribe/Learn More  >

Radiation Characteristics of a Particle Curtain in a Free-Falling Particle Solar Receiver

[+] Author Affiliations
Apurv Kumar, Wojciech Lipiński

Australian National University, Canberra, Australia

Jin-Soo Kim

CSIRO Energy, Newcastle, Australia

Paper No. HT2017-5117, pp. V001T09A014; 11 pages
  • ASME 2017 Heat Transfer Summer Conference
  • Volume 1: Aerospace Heat Transfer; Computational Heat Transfer; Education; Environmental Heat Transfer; Fire and Combustion Systems; Gas Turbine Heat Transfer; Heat Transfer in Electronic Equipment; Heat Transfer in Energy Systems
  • Bellevue, Washington, USA, July 9–12, 2017
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5788-5
  • Copyright © 2017 by ASME


Radiation absorption by a particle curtain formed in a solar free falling particle receiver is investigated using a Eulerian-Eulerian granular two-phase model to solve the two-dimensional mass and momentum equations (CFD). The radiative transfer equation is subsequently solved by the Monte-Carlo (MC) ray-tracing technique using the CFD results to quantify the radiation intensity through the particle curtain. The CFD and MC results provide reliable opacity predictions and are validated with the experimental results available in literature. The particle curtain was found to absorb the solar radiation efficiently for smaller particles at high flowrates due to higher particle volume fraction and increased radiation extinction. However, at low mass-flowrates the absorption efficiency decreases for small and large particles.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In