0

Full Content is available to subscribers

Subscribe/Learn More  >

Performance Analysis of High Temperature Sensible Heat Thermal Energy Storage Systems for Concentrated Solar Thermal Power Plants

[+] Author Affiliations
S. Saeed Mostafavi Tehrani, Yashar Shoraka, Robert A. Taylor, Chris Menictas

University of New South Wales, Sydney, Australia

Paper No. HT2017-5091, pp. V001T09A013; 12 pages
doi:10.1115/HT2017-5091
From:
  • ASME 2017 Heat Transfer Summer Conference
  • Volume 1: Aerospace Heat Transfer; Computational Heat Transfer; Education; Environmental Heat Transfer; Fire and Combustion Systems; Gas Turbine Heat Transfer; Heat Transfer in Electronic Equipment; Heat Transfer in Energy Systems
  • Bellevue, Washington, USA, July 9–12, 2017
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5788-5
  • Copyright © 2017 by ASME

abstract

Due to their relatively high capital and environmental cost of two-tank molten salt thermal storage systems, a significant amount of research has gone into looking for sensible and latent thermal energy storage alternatives suitable for concentrated solar thermal (CST) plants. Despite a large number of developments in the last decade, comparative studies among promising options have been lacking. In particular, only a few comparative studies are available in which thermal energy storage (TES) systems are integrated as an active subcomponent of CST plant. Therefore, this study compares selected sensible heat thermal energy storage systems based on their integrated performance with other CST components (e.g. a tower -based CST plant with a Rankine cycle) over a year of operation.

In the present study, annual performances of single-medium thermocline (SMT), double-medium thermocline (DMT), and shell-and-tube (ST) system were compared with that of a conventional two-tank molten salt storage system. Concrete with porosity of 0.2 (concrete occupies 80% of the system) was selected as a low cost filler material in the DMT and ST systems. The systems were sized for 15 hours of storage capacity and integrated into a validated 19.9 MWe Gemasolar power plant model with solar multiple of 2.5. Before performing annual integrated simulations, an optimum design of each storage system was selected based on a performance analysis of the storage system over a constant 15 hours discharge. A CST plant with a two-tank molten salt system enables the highest amount of electricity generation in a year followed by the SMT and DMT systems, which resulted in 7% and 9% less electricity generation, respectively. For the CST plant with ST system, 20% less electricity was generated over a year. Overall, this study provides a methodology for the comparison of the TES alternatives, and it gives insight the most promising alternative for replacing two-tank molten salt systems.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In