Full Content is available to subscribers

Subscribe/Learn More  >

Large Eddy Simulation of Heat Transfer Over In-Line Flat-Tube Array in Laminar and Turbulent Flows

[+] Author Affiliations
Salar Taghizadeh, Sumanta Acharya, Kong Ling, Yousef Kanani

Illinois Institute of Technology, Chicago, IL

Xuan Ge

Florida State University, Tallahassee, FL

Paper No. HT2017-5078, pp. V001T09A009; 11 pages
  • ASME 2017 Heat Transfer Summer Conference
  • Volume 1: Aerospace Heat Transfer; Computational Heat Transfer; Education; Environmental Heat Transfer; Fire and Combustion Systems; Gas Turbine Heat Transfer; Heat Transfer in Electronic Equipment; Heat Transfer in Energy Systems
  • Bellevue, Washington, USA, July 9–12, 2017
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5788-5
  • Copyright © 2017 by ASME


This study presents a transient three-dimensional numerical study on fluid flow and heat transfer of flat-tube array using large eddy simulation (LES) covering both laminar and turbulent flow regimes. The simulations were performed in a rectangular region containing only one tube with periodic conditions specified on all boundaries. A staggered flat-plate array was first studied, and an existing solution was used for validation purpose. The numerical models were then applied to an in-line array composed of flat tubes with an aspect ratio of 0.25 and fixed tube spacings. By varying the in-flow velocity, the tube array was studied over a wide range of Reynolds number (600–12000). Temperature, velocity, and turbulent kinetic energy distributions as well as the interactions between them are presented and analyzed. Furthermore, the local heat transfer rate was analyzed along the various parts of the tube (leading edge, flat-top and wake or trailing-edge regions). Heat transfer correlation for each region of the tube and the entire tube array is proposed.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In