Full Content is available to subscribers

Subscribe/Learn More  >

Air-Side Heat Transfer Enhancement and Pumping Power Penalty in Air-Cooled Heat Exchangers With Dimpled Fins

[+] Author Affiliations
Tung X. Vu, Lokanath Mohanta, Vijay K. Dhir

University of California, Los Angeles, Los Angeles, CA

Paper No. HT2017-4723, pp. V001T09A002; 10 pages
  • ASME 2017 Heat Transfer Summer Conference
  • Volume 1: Aerospace Heat Transfer; Computational Heat Transfer; Education; Environmental Heat Transfer; Fire and Combustion Systems; Gas Turbine Heat Transfer; Heat Transfer in Electronic Equipment; Heat Transfer in Energy Systems
  • Bellevue, Washington, USA, July 9–12, 2017
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5788-5
  • Copyright © 2017 by ASME


In this work, we focus exclusively on heat transfer enhancement techniques for the air-side heat transfer in air-cooled heat exchangers/condensers. An innovative dimpled fin configuration is explored. Experiments, in which both heat transfer and drag are measured, are conducted with flat tubes in three configurations: without fins, with plain fins and with dimpled fins. Reynolds numbers based on the hydraulic diameter of the finned passages are varied between 600 and 7000. Results indicate that fins are more advantageous at lower Reynolds numbers since the increase in drag at higher Reynolds numbers quickly erases any advantage due to an increase in heat transfer rate. As an example, for the plain fins versus a bare tube at a Reynolds number of 600, there is a 7 fold increase in heat transfer with only a 5 fold increase in drag. However, at a Reynolds number of 7000, both heat transfer and drag increase by approximately 6 times, indicating that the increase in drag has caught up with the heat transfer enhancement. Similarly, while dimpled fins do result in higher heat transfer compared with the plain fins, the advantage is also more prominent at lower Reynolds numbers where heat transfer enhancement is higher than the associated increase in pumping power.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In