Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Study on Effective Placement of PCM Packets in Cooling Vest to Improve Performance in Warm Environment

[+] Author Affiliations
Mariam Itani, Nesreen Ghaddar, Kamel Ghali, Beatrice Khater

American University of Beirut, Beirut, Lebanon

Djamel Ouahrani

Qatar University, Doha, Qatar

Walid Chakroun

Kuwait University, Kuwait, Kuwait

Paper No. HT2017-4756, pp. V001T04A002; 8 pages
  • ASME 2017 Heat Transfer Summer Conference
  • Volume 1: Aerospace Heat Transfer; Computational Heat Transfer; Education; Environmental Heat Transfer; Fire and Combustion Systems; Gas Turbine Heat Transfer; Heat Transfer in Electronic Equipment; Heat Transfer in Energy Systems
  • Bellevue, Washington, USA, July 9–12, 2017
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5788-5
  • Copyright © 2017 by ASME


Global warming has increased the risk of heat stress of outdoor workers and one measure against heat stress is wearing passive personal cooling clothing. Passive body cooling systems, including phase change material (PCM) cooling vests, are considered as an effective solution to improve the working endurance of outdoor active workers.

The objective of this study is to assess the effective placement of PCM packets in the cooling vest by examining the local and overall sensation and comfort when: (i) only the frontal segment of the human torso is covered (ii) only the back segment of the human torso is covered and (iii) both segments are covered. The PCM cooling vest is worn by human subjects performing cycling at about 3 Mets and for 30 minutes in a climatic chamber maintained at 28 °C and 60 % relative humidity. The used PCM melting temperature is 28 °C with a coverage area of 642 cm2 and total weight of the vest of 1.19 kg including 8 PCM packets (87.5 grams each). The physiological/thermal responses such as body core and mean skin temperatures, heart rate, and skin wittedness are monitored during the experiments while exercising and wearing the vest. In particular, the frontal and back torso skin temperatures are examined after being subjected to local cooling compared to the case when no PCM packets cover the torso segment. Moreover, subjective votes of thermal comfort, whole body and torso thermal sensations, skin and clothing wetness sensation and perceived exertion are recorded throughout the experiment. The experiment was repeated on five male subjects to ensure robustness of the obtained results. It was found that the core temperature changed slightly when wearing the vest, however the local skin temperature of the back and front torso segments decreased by about 5 °C and 3 °C at the end of the exercise, respectively. Gradual improvement in comfort that reaches a stable level when the PCM starts melting till the end of the exercise was also noticed.

Copyright © 2017 by ASME
Topics: Cooling



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In