Full Content is available to subscribers

Subscribe/Learn More  >

Experimental and Numerical Investigation of Temperature and Flow Distribution Inside a Glove Box Enclosure for a High-Accuracy Coordinate Measurement Machine

[+] Author Affiliations
Dusan Spernjak, Robert Morgan, John Bernardin, Stephen A. Ney

Los Alamos National Laboratory, Los Alamos, NM

Ricardo Mejia Alvarez

Michigan State University, East Lansing, MI

Paper No. HT2017-4990, pp. V001T02A008; 10 pages
  • ASME 2017 Heat Transfer Summer Conference
  • Volume 1: Aerospace Heat Transfer; Computational Heat Transfer; Education; Environmental Heat Transfer; Fire and Combustion Systems; Gas Turbine Heat Transfer; Heat Transfer in Electronic Equipment; Heat Transfer in Energy Systems
  • Bellevue, Washington, USA, July 9–12, 2017
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5788-5
  • Copyright © 2017 by ASME


Experiments and simulations were performed to assess the performance of an HVAC system for the cooling of a Leitz Infinity coordinate measurement machine (CMM) enclosed within a glove box (GB). Manufacturer specifications require maintaining very uniform temperatures with spatial and temporal variations not to exceed 0.3 °C/hr, 0.4 °C/day, and 0.1°C/m. Data were collected at 0.17 Hz by 2 thermocouples located outside the glovebox, 10 static thermocouples located inside the glovebox, and up to 28 thermocouples attached to the moving granite table of the CMM. The latter thermocouples are arrayed in a grid in the volume of interest (VOI) which envelopes the motion of the CMM measuring head above the granite table. Data were collected for periods ranging from 1 to 5 days to observe the effects of temperature variations within the enclosing facility.

Simulations were then performed on the enclosed volume of the GB using ANSYS-CFX to better understand the heat loads, and test temperature variation mitigation strategies. These simulations consisted of 18 runs which varied heat input from the CMM motors, inflow gas temperature from the HVAC system into the GB, and non-uniform GB wall temperature boundary conditions. Heat loads from the motors were found to be insignificant influences on the temperature distribution, while fluid entrainment inside the diffuser was discovered to lead to an adverse temperature distribution, and insufficient cooling in the VOI. Velocity distributions were examined by using a TSI VelociCalc 8345 to verify the presence of stagnant regions in the GB. Finally, modifications to the diffuser design were proposed to eliminate entrainment, improve the flow distribution, and enhance temperature uniformity.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In