0

Full Content is available to subscribers

Subscribe/Learn More  >

Vapor Bubble Interaction With a Superheated Wall

[+] Author Affiliations
M. Wasy Akhtar

University of Houston, Houston, TX

Paper No. HT2017-4882, pp. V001T02A004; 9 pages
doi:10.1115/HT2017-4882
From:
  • ASME 2017 Heat Transfer Summer Conference
  • Volume 1: Aerospace Heat Transfer; Computational Heat Transfer; Education; Environmental Heat Transfer; Fire and Combustion Systems; Gas Turbine Heat Transfer; Heat Transfer in Electronic Equipment; Heat Transfer in Energy Systems
  • Bellevue, Washington, USA, July 9–12, 2017
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5788-5
  • Copyright © 2017 by ASME

abstract

Sliding bubbles are known to augment heat transfer rates on the surface on which they slide. The pre-cursor problem — the bubble approaching an inclined superheated wall provides the initial flow and thermal field for the sliding bubble problem. An FC-87 vapor bubble rising in a thermally stratified flow field is simulated along with the bubble wall interaction effects. The simulation is conducted on a dynamic octree grid for improved accuracy and efficiency. The evolution of the bubble shape and the wake behind the rising bubble is captured in a three-dimensional model, which takes into account bubble growth due to superheat at the liquid-vapor interface and the effect of interface heat flux on the local saturation temperature. After the first bubble-wall interaction, a microlayer tens of microns thick forms between the bubble and the wall; a thermal wake develops behind the bubble as it begins to slide against the wall.

The predicted shapes, Re and Weber numbers and microlayer thicknesses show excellent agreement in comparison to experimental data from other researchers. Evolution of the flow and temperature fields were examined with the aid of contours of vapor volume fraction and iso-lines of mixture temperature superimposed on three-dimensional shapes of the bubble. Overall bubble dynamics and microlayer dynamics, including microlayer thickness and microlayer heat flux, are presented as functions of time. Using the wall, microlayer and wake heat transfer rates, an enhancement of the total wall heat flux was found to be on the order of 6 times the background heat flux.

This work describes the bubble evolution through the first rebounding in detail, but the dynamic octree adaption algorithm lends itself to study of the long-term dynamics well into the sliding regime. The technique can also be used to investigate other multiphase flow phenomena — especially bubble coalescence and breakup.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In