Full Content is available to subscribers

Subscribe/Learn More  >

Measurement of Two-Dimensional Void Fraction Distributions of Rising Bubbles in a Simulated Sub-Channel by Wire-Mesh Sensors at Conditions of Forced Convective and Stagnant Flows

[+] Author Affiliations
Yota Suzuki, Yusei Tanaka, Taku Sakka, Akinori Sato, Kazuyuki Takase

Nagaoka University of Technology, Nagaoka, Japan

Shinichiro Uesawa, Hiroyuki Yoshida

Japan Atomic Energy Agency, Naka-gun, Japan

Paper No. ICONE25-67895, pp. V009T15A062; 10 pages
  • 2017 25th International Conference on Nuclear Engineering
  • Volume 9: Student Paper Competition
  • Shanghai, China, July 2–6, 2017
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5787-8
  • Copyright © 2017 by ASME


Clarifying thermal-hydraulic characteristics in a nuclear reactor core is important in particular to enhance the thermo-fluid safety of nuclear reactors. Spacers installed in subchannels of fuel assemblies have the role of keeping the interval between adjacent fuel rods constantly. Similarly, in case of PWR the spacer has also the role as the turbulence promoter. When the transient event occurs, two-phase flow is generated by boiling of water due to heating of fuel rods. Therefore, it is important to confirm the two-phase flow behavior around the spacer. So, the effect of the spacer affecting the two-phase flow was investigated experimentally at forced convective flow condition. Furthermore, in order to improve the thermal safety of current light water reactors, it is necessary to clarify the two-phase flow behavior in the subchannels at the stagnant flow condition. So, the bubbly flow data around a simulated fuel rod were obtained experimentally at the stagnant flow condition. A wire-mesh sensor was used to obtain a detailed two-dimensional void fraction distribution around the simulated spacer and fuel rod. As a result of this research, the bubbly behavior around the simulated spacer and fuel rod was qualitatively revealed and also bubble dynamics in the sub-channels at the conditions of forced convective and stagnant flows were evaluated. The present experimental data are very useful for verifying the detailed three-dimensional two-phase flow analysis codes.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In