0

Full Content is available to subscribers

Subscribe/Learn More  >

Flow Field Analysis of the Reactor Coolant Pump Internal Cooling Circulation

[+] Author Affiliations
Jie Qin, Qingmu Xu, Junkai Yuan, Kun Cai

Shanghai Nuclear Engineering Research & Design Institute, Shanghai, China

Paper No. ICONE25-67179, pp. V008T09A040; 6 pages
doi:10.1115/ICONE25-67179
From:
  • 2017 25th International Conference on Nuclear Engineering
  • Volume 8: Computational Fluid Dynamics (CFD) and Coupled Codes; Nuclear Education, Public Acceptance and Related Issues
  • Shanghai, China, July 2–6, 2017
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5786-1
  • Copyright © 2017 by ASME

abstract

Reactor coolant pump (RCP) is one of the most critical devices in third generation of pressurized water reactor nuclear power plant. EMD shield pump and KSB wet winding pump are two representative kinds of RCPs without complex shaft seal system. Due to cancellation of shaft seal system, the entire rotors (including the flywheel) are immersed in the coolant. The losses in RCPs take one third of the total power including rotation loss caused by rotor in the water, electromagnetic loss in the shielding sleeve,the heat transferred through high temperature coolant, and heat generated by bearing.Because of the losses listed above, bearing and winding are heated,and the losses make temperature rise. in order to ensure that the motor is working properly at low temperatures, the company EMD and KSB design the RCP internal cooling circulation which brings the heat out to ensure the normal operation of the RCPs.

The RCP internal cooling circulation includes inlet flow area, auxiliary impeller, thrust bearing, the lower flywheel, motor can, upper radial bearing, upper flywheel, outlet flow area, and external heat exchanger,etc. Flow characteristics in every flow path determine the flow distribution and heat transfer, and the flow distribution determines whether the cooling performance of RCP internal cooling circulation meets the requirements. In order to control operating temperature of motor and bearing, and to optimize heat transfer, adjusting the size of flow area and changing the flow characteristics arecritical. flow field and temperature field in RCP internal cooling circulation need overall analysis.

Flow distribution can be obtained theoretically through the calculation of an overall three-dimensional model.But on the one hand, the calculation time is long due to a complex three-dimensional model with a large quantity of grids, on the other hand, it is easier to casue errors in local processing and the errors are difficult to find or correct. For rapid analysis and optimization of flow and heat transfer in RCP internal cooling circulation, ensure the motor winding and bearing operate at an appropriate temperature, the local characteristics of RCP internal cooling circulation are studied, one-dimensionalanalysis method of RCP internal cooling circulation is developed. This one-dimensional analysis method can be used to predict the flow distribution of each part of RCP internal cooling circulation according to change of the channel geometry parameters, key dimensions, boundary conditions and rotor speed. The geometric parameters are optimized by analyzing the flow distribution, and the purpose of design guidance are achieved.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In