0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation of Flow Instability in Vortex Diodes

[+] Author Affiliations
Junrong Wang, Qi Xiao, Hanbing Ke, Xu Hu, Shaodan Li, Zhiguo Wei

Wuhan 2nd Ship Design and Research Institute, Wuhan, China

Paper No. ICONE25-66512, pp. V008T09A015; 7 pages
doi:10.1115/ICONE25-66512
From:
  • 2017 25th International Conference on Nuclear Engineering
  • Volume 8: Computational Fluid Dynamics (CFD) and Coupled Codes; Nuclear Education, Public Acceptance and Related Issues
  • Shanghai, China, July 2–6, 2017
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5786-1
  • Copyright © 2017 by ASME

abstract

A vortex diode is used as a highly reliable check-valve in nuclear applications, where it mainly benefits from the intrinsic properties of no moving parts and no leakage. Its basic principle is similar to the diode in an electric circuit. The typical structure of a vortex diode consists of a chamber with axial and tangential ports. When the fluid is injected through the axial port, a simple radial flow in the chamber leads to a relatively low flow resistance. On the other hand, in the reverse flow mode, a strongly swirling vortex can be set up in the chamber, resulting in a very high flow resistance.

Several experimental studies found vortex-induced vibration of a vortex diode in the reverse flow mode, where it indicated that the flow was unstable in the vortex diode. This phenomenon may affect the reliability of the vortex diode. However, the mechanism has not been investigated systematically and profoundly. In this paper, 3-D simulations are carried out to help understand the related flow characteristics in the vortex diode. Standard k-ε model was selected for forward flow, while Reynolds stress model was selected for reverse flow. We have found that the results from transient simulations are in good agreement with experimental data. The transient simulations also capture the periodic pressure fluctuation in the vortex diode. Vortex diodes with different structures and geometrical parameters are simulated at different Reynolds number conditions. It is found that the characteristics of the pressure fluctuation are determined by the structure parameters and working conditions of the vortex diode. The flow instability is mainly caused by the asymmetry of the vortex diode. The work presented in this paper will be useful to give better understanding of flows in vortex diodes and to provide some guidance for optimizing the vortex diode.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In