0

Full Content is available to subscribers

Subscribe/Learn More  >

Preliminary Analysis of Hydrogen Distribution During Severe Accident Induced by Loss of Coolant Accident

[+] Author Affiliations
Di Wang, Xuewu Cao

Shanghai Jiao Tong University, Shanghai, China

Paper No. ICONE25-66497, pp. V008T09A014; 6 pages
doi:10.1115/ICONE25-66497
From:
  • 2017 25th International Conference on Nuclear Engineering
  • Volume 8: Computational Fluid Dynamics (CFD) and Coupled Codes; Nuclear Education, Public Acceptance and Related Issues
  • Shanghai, China, July 2–6, 2017
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5786-1
  • Copyright © 2017 by ASME

abstract

During hypothetical severe accidents in nuclear power plants, a large amount of hydrogen is generated rapidly as a result of Zirconium-Steam reaction and released into the containment. Hydrogen mixes with air and may come into combustion or detonation under proper conditions, which threatens the integrity of containment. Therefore, getting detailed hydrogen flow and distribution in various physical mechanisms is a key issue to resolve the hydrogen risk in containment and compartments. To study local hydrogen distribution in the containment of advanced passive PWR, an analysis model is built by 3-dimensional CFD code. Computational domain is divided by structured grid which contains over 100,000 cells. the shape and surface area of walls and obstacles of steel shell and internal structure, which have great impact on gas flow and heat transfer, are included. Hydrogen distribution in containment simulating with different turbulence models is studied, the result shows that during large amount of hydrogen release stage. In hydrogen distribution result simulating with algebraic model, hydrogen is all gathered in the dome and the peak concentration reaches 17%. When k-ε model is adopted, the peak concentration in the dome is 8%, hydrogen stratification is established in whole large space. Besides, hydrogen distribution near source also shows algebraic model cannot simulate turbulence diffusion in local compartment. It is more reasonable choosing k-ε model to study hydrogen behavior in containment. Based on adopted k-ε model, the effect of steam on hydrogen distribution is investigated. With steam injection, the hydrogen distribution is more homogeneous in upper space and average concentration is lower. In local compartment, due to diffusion enhanced by steam, the hydrogen concentration is higher in the bottom.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In