0

Full Content is available to subscribers

Subscribe/Learn More  >

CFD Simulation of Passive Containment Cooling System in Hot Leg SB-LOCA for 1000MW PWR

[+] Author Affiliations
Jingya Li, Xiaoying Zhang

Sun Yet-Sen University, Zhuhai, China

Paper No. ICONE25-66025, pp. V008T09A002; 10 pages
doi:10.1115/ICONE25-66025
From:
  • 2017 25th International Conference on Nuclear Engineering
  • Volume 8: Computational Fluid Dynamics (CFD) and Coupled Codes; Nuclear Education, Public Acceptance and Related Issues
  • Shanghai, China, July 2–6, 2017
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5786-1
  • Copyright © 2017 by ASME

abstract

The passive cooling system (PCCS) for reactor containment is a security system that can be used to cool the atmosphere and reduce pressure inside of containment in case of temperature and pressure increase caused by vapor injection, which requires no external power because it works only with natural forces. However, as the driving forces from natural physical phenomena are of low amplitude, uncertainties and instabilities in the physical process can cause failure of the system. This article aims to establish a CFD simulation model for the Passive Containment Cooling System of 1000MW PWR using Code_Saturne and FLUENT software. The comparison of 4 different models based respectively on mixture model, COPAIN test, Uchida correlation and Chilton-Colburn analogy which simulate the condensing effect and the improvement of source code are based on a 3D simulation of PCCS system. To simulate the thermal-hydraulic condition in the containment after LOCA accident caused by a double-ended main pipe rupture, a high temperature vapor with the given mass flow rate are supposed to be the source of energy and mass into containment. Meanwhile the surface of three condensing island applies the wall condensation model.

The simulation results show similar transient process obtained with the 4 models, while the difference between the transient simulation and the steady-state analysis of three models is less than 3%. The large mass flow rate of water loss status inside the containment cause a high flow rate of vapor which could be uniformly mixed with air in a short time. For the self-condensing efficiency of 3 groups of PCCS system, the non-centrosymmetric injection position resulting that the condensing efficiency is slightly higher for the two heat exchanger groups nearby. During the first 2400s of simulation time, more than 75.69% of the vapor is condensed, indicating that for the occurrence of condensation at the wall mainly driven by natural convection, the effect of thermodynamic siphon could improve the flow of gas mixture inside the tubes when the velocity of mixture is not large enough, so that the vapor could smoothly enter the tube and reach the internal cooling surface then to be condensed. Besides, PCCS ensure the containment internal pressure maintained below 2 bar and the temperature maintained below 380K during 3600s.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In