Full Content is available to subscribers

Subscribe/Learn More  >

In-Vessel Corium Behavior and Steam Explosion Risks: A Review of Experimental Approaches

[+] Author Affiliations
Pei Shen, Wenzhong Zhou

City University of Hong Kong, Hong Kong, China

Paper No. ICONE25-67176, pp. V007T11A017; 16 pages
  • 2017 25th International Conference on Nuclear Engineering
  • Volume 7: Fuel Cycle, Decontamination and Decommissioning, Radiation Protection, Shielding, and Waste Management; Mitigation Strategies for Beyond Design Basis Events
  • Shanghai, China, July 2–6, 2017
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5785-4
  • Copyright © 2017 by ASME


Although no one would like to see, a severe nuclear reactor accident may result in reactor core melting, the fuel melt dropping into water in the reactor vessel, and then interacting with coolant into steam explosion. Steam explosion is a result of very rapid and intense heat transfer and violent interaction between the high temperature melt and low temperature coolant. The timescale for heat transfer is shorter than that for pressure relief, resulting in the formation of shock waves and/or the production of missiles at a later time during the expansion of coolant steam explosion. Steam explosion may endanger the reactor vessel and surrounding structures. During a severe reactor accident scenario, steam explosion is an important risk, even though its probability to occur is pretty low, since it could lead to large releases of radioactive material, and destroy the containment integrity. This study provides a comprehensive review of vapor explosion experiments, especially the most recent ones. In this review, fist, small to intermediate scale experiments related to premixing, triggering and propagation stages are reviewed and summarized in tables. Then the intermediate to large scale experiments using prototypic melt are reviewed and summarized. The recent OECD/SERENA2 project including KROTOS and TROI facilities’ work is also discussed. The studies on steam explosion are vital for reactor severe accident management, and will lead to improved reactor safety.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In