0

Full Content is available to subscribers

Subscribe/Learn More  >

US Department of Energy’s CoDCon Project: An Aqueous Safeguards R&D Program

[+] Author Affiliations
James C. Bresee, Patricia D. Paviet

U. S. Department of Energy, Washington, DC

Terry A. Todd

Idaho National Laboratory, Idaho Falls, ID

Paper No. ICONE25-67965, pp. V007T10A047; 3 pages
doi:10.1115/ICONE25-67965
From:
  • 2017 25th International Conference on Nuclear Engineering
  • Volume 7: Fuel Cycle, Decontamination and Decommissioning, Radiation Protection, Shielding, and Waste Management; Mitigation Strategies for Beyond Design Basis Events
  • Shanghai, China, July 2–6, 2017
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5785-4
  • Copyright © 2017 by ASME

abstract

In 2015, Office of Nuclear Energy of the U.S. Department of Energy established a research and development project at Pacific Northwest National Laboratory to evaluate the process control capability to produce a specific uranium/plutonium product from used commercial nuclear fuel using an aqueous co-decontamination separations process. The process is controlled using on-line instrumentation supported by a dynamic process model. The new program is called the CoDCon project.

The result of the study will be a quantitative measure of the current capability to produce a specific U/Pu product, using U-IV to reduce plutonium to Pu-III and prepare a mixed product, the composition predicted by a dynamic model, measured with on-line instrumentation and controlled by the adjustment of process variables. This approach would be an alternative to the use of the PUREX aqueous separations process that produces separate plutonium and uranium products that are later blended to prepare the desired mixture. Since plutonium is always accompanied by uranium, the project will provide a safeguards-by-design tool for possible use in future commercial separations plant designs. The effectiveness of the design tool will be quantified using a methodology published by B. Cipiti, et al1.

The paper describes the process and the control system used by the project and provides details on the current status of the research and development program. Since this advanced process control system may have international applications, arrangements will be described for possible foreign participation in the project.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In