Full Content is available to subscribers

Subscribe/Learn More  >

Shape Characteristics and Condensation Heat Transfer of Supersonic Steam Jet in Subcooled Water

[+] Author Affiliations
Wang Fangnian, Chen Yaodong, Bai Ning, Xing Mian, Meng Zhaocan, Shen Feng

SPICRI, Beijing, China

Qin Huan

Harbin Engineering University, Harbin, China

Paper No. ICONE25-67604, pp. V006T08A102; 7 pages
  • 2017 25th International Conference on Nuclear Engineering
  • Volume 6: Thermal-Hydraulics
  • Shanghai, China, July 2–6, 2017
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5784-7
  • Copyright © 2017 by ASME


The shape characteristics and direct contact condensation (DCC) heat transfer of submerged supersonic steam jet were investigated. One of the shape identification methods is the DCC shape regime map as a function of nozzle exit pressure, mass flux and pool water temperature, another one is the Look Up Table. Then based on the theoretical analysis, the new basic expressions of supersonic steam jet dimensionless penetration length, maximum expansion ratio, and heat transfer correlations were given, which were in terms of Ma number and Ja number. The correlations were nonlinearly fitted and validated well against the experimental data form open literatures. The discrepancies of penetration length and maximum expansion ratio between predicted and experimental values were within ±25% and ±12% respectively. Supersonic steam jet DCC heat transfer is feasible to be calculated via the identification of steam jet shape and selection of the corresponding shape and heat transfer correlations.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In