Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Investigation of Convective Heat Transfer to Supercritical Hydrogen in a Straight Tube

[+] Author Affiliations
Yu Ji, Lei Shi, Jun Sun

Tsinghua University, Beijing, China

Paper No. ICONE25-66610, pp. V006T08A044; 8 pages
  • 2017 25th International Conference on Nuclear Engineering
  • Volume 6: Thermal-Hydraulics
  • Shanghai, China, July 2–6, 2017
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5784-7
  • Copyright © 2017 by ASME


Hydrogen is adopted as coolant for regenerative cooling nozzle and reactor reflector in nuclear thermal propulsion (NTP), which may be a promising technology for human space exploration in the near future due to its large thrust and high specific impulse. During the cooling processes, the hydrogen experiences the transition from subcritical state to supercritical state, which influences the heat transfer severely. This paper is intended to study the characteristic of convective heat transfer to supercritical hydrogen in a straight tube under high heat flux through numerical simulation, which is a common phenomenon in NTP operation. The thermophysical properties and transport properties including the equation of state, specific heat capacity, viscosity and thermal conductivity of hydrogen are evaluated firstly by compared with the data from National Institute of Standards and Technology (NIST). Then, the flow and heat transfer process is investigated using Reynolds Averaged Naiver-Stokes (RANS) model, and the approach is validated by the successfully predicted behavior called local heat transfer deterioration. Moreover, the mechanism of heat transfer deterioration is analyzed briefly according to the detailed information of flow field. This work herein contributes to the further NTP design and research.

Copyright © 2017 by ASME
Topics: Convection , Hydrogen



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In