0

Full Content is available to subscribers

Subscribe/Learn More  >

Measurement of the Vapor Blanket Thickness by Image Processing Method

[+] Author Affiliations
Fangxin Hou, Huajian Chang

Tsinghua University, Beijing, China

Yufeng Zhao, Ming Zhang, Tianfang Gao

State Nuclear Power Technology R&D Center, Beijing, China

Peipei Chen

State Power Investment Group Corporation, Beijing, China

Paper No. ICONE25-66576, pp. V006T08A041; 8 pages
doi:10.1115/ICONE25-66576
From:
  • 2017 25th International Conference on Nuclear Engineering
  • Volume 6: Thermal-Hydraulics
  • Shanghai, China, July 2–6, 2017
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5784-7
  • Copyright © 2017 by ASME

abstract

It is widely believed that the behavior of vapor bubble/blanket over heating surface plays a critical role in determining the critical heat flux (CHF) in the subcooled flow boiling. Various CHF models are based on phenomenon observations of vapor bubble/blanket in the flow channel and use vapor bubble/blanket physical parameters to determine CHF values. In this study, subcooled flow boiling tests were conducted on the experiment facility “Test of External Vessel Surface with Enhanced Cooling” (TESEC). A series of natural circulation subcooled flow boiling CHF experiments is performed in a 30 mm by 61 mm rectangular flow channel with a 200 mm long heated surface along the flow direction at various inclination angles of the test section. With the assistance of high speed video technology, the process of flow boiling in the experiments was recorded and analyzed. A novel image processing method based on a MATLAB code is used to analyze high speed images at 999 frames/second and is able to provide detailed statistical information of vapor behavior on the heating surface. By this process, the static and dynamic information of vapor blanket is obtained at the pre-CHF conditions at various inclination conditions of flow channels (30 to 90 degrees). In addition, the Fast Fourier Transform (FFT) algorithm is used to further analyze the dynamic behavior of the vapor blanket.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In