Full Content is available to subscribers

Subscribe/Learn More  >

Investigation and Modeling of the In-Tube Heat Transfer of Fluids at Supercritical Pressure During Heating

[+] Author Affiliations
Chen-Ru Zhao, Zhen Zhang, Han-Liang Bo, Pei-Xue Jiang

Tsinghua University, Beijing, China

Paper No. ICONE25-66232, pp. V006T08A016; 7 pages
  • 2017 25th International Conference on Nuclear Engineering
  • Volume 6: Thermal-Hydraulics
  • Shanghai, China, July 2–6, 2017
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5784-7
  • Copyright © 2017 by ASME


Investigations and numerical modelling are performed on the heat transfer to CO2 at supercritical pressure under buoyancy affected conditions during heating in a vertical tube with inner diameter of 2 mm. Numerical modelling are carried out using several low Reynolds number (LRN) k-ε models, including the model due to Launder and Sharma (LS), Abe, Kondoh and Nagano (AKN), Myong and Kasagi (MK) models. The numerical results are compared with the corresponding experimental data and the predicted values using the semi-empirical correlation for convection heat transfer of supercritical fluids without deterioration. The abilities of various LRN models to predict the heat transfer to fluids at supercritical pressures under normal and buoyancy affected heat transfer conditions are evaluated. Detailed information related to the flow and turbulence is presented to get better understanding of the mechanism of the heat transfer deterioration due to buoyancy, as well as the different behavior of various LRN turbulence models in responding to the buoyancy effect, which gives clues in future model improvement and development to predict the buoyancy affected heat transfer more precisely and in a broader range of conditions as they come to be used to simulate the flow and heat transfer in various applications such as in the supercritical pressure water-cooled reactor (SCWR) and the supercritical pressure steam generator in the high temperature gas cooled reactor (HTR).

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In