0

Full Content is available to subscribers

Subscribe/Learn More  >

Investigation of Air Ingress Into a Vacuum Vessel Related to Particle Re-Suspension and Distribution for Dust Issues in ITER

[+] Author Affiliations
Emmanuel Porcheron, Pascal Lemaitre

Institut de Radioprotection et de Sûreté Nucléaire, Gif-sur-Yvette, France

Paper No. ICONE25-67496, pp. V005T05A045; 8 pages
doi:10.1115/ICONE25-67496
From:
  • 2017 25th International Conference on Nuclear Engineering
  • Volume 5: Advanced and Next Generation Reactors, Fusion Technology; Codes, Standards, Conformity Assessment, Licensing, and Regulatory Issues
  • Shanghai, China, July 2–6, 2017
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5783-0
  • Copyright © 2017 by ASME

abstract

During normal operation of the ITER tokamak, few hundred kilograms of dust containing beryllium (Be) and tungsten (W) will be produced due to the erosion of the walls of the vacuum chamber by the plasma. During a loss of coolant accident (LOCA) or a loss of vacuum accident by air ingress (LOVA), hydrogen could be produced by dust oxidation with steam. Evaluation of the risk of dust and hydrogen explosion, that may lead to a loss of containment, requires studying the physical processes involved in the dust re-suspension and its distribution in the tokamak chamber. This experimental study is conducted by the Institut de Radioprotection et de Sûreté Nucléaire (IRSN) to simulate dust re-suspension phenomena induced by high velocity jet under low pressure conditions. Tests are conducted in a large scale facility (TOSQAN, 7 m3) able to reproduce primary vacuum conditions (1 mbar). Optical diagnostics such as PIV technique (Particles Image Velocimetry) are implemented on the facility to provide time resolved measurements of the dust re-suspension in terms of phenomenology and velocity. We present in this paper the TOSQAN facility with its configuration for studying dust re-suspension under low pressure conditions and underway experiments showing the mechanism of dust re-suspension by sonic and supersonic flows.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In