Full Content is available to subscribers

Subscribe/Learn More  >

Neutronic Analyses for CFETR With Modular Helium Cooled Lithium Ceramic Blanket

[+] Author Affiliations
Kun Xu, Minyou Ye, Shifeng Mao

University of Science and Technology of China, Hefei, China

Yuntao Song, Mingzhun Lei

Chinese Academy of Sciences, Hefei, China

Paper No. ICONE25-67291, pp. V005T05A035; 8 pages
  • 2017 25th International Conference on Nuclear Engineering
  • Volume 5: Advanced and Next Generation Reactors, Fusion Technology; Codes, Standards, Conformity Assessment, Licensing, and Regulatory Issues
  • Shanghai, China, July 2–6, 2017
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5783-0
  • Copyright © 2017 by ASME


China Fusion Engineering Test Reactor (CFETR) is a superconducting tokamak proposed by national integration design group for magnetic confinement fusion reactor of China to bridge the R&D gaps between ITER and DEMO. Since the launch of CFETR conceptual design, a modular helium cooled lithium ceramic blanket concept had been under development by the blanket integration design team of the Institute of Plasma Physics of the Chinese Academy of Sciences, to complete CFETR in demonstrating its fusion energy production ability, tritium self-sufficiency and the remote maintenance strategy. To validate the feasibility, the neutronic analyses for CFETR with this modular helium cooled lithium ceramic blanket were performed. The 1-D neutronic study for CFETR was done in the first place to give a preliminary and quick demonstration of the overall neutronic performance. Meanwhile, the neutronic analyses for a single standard helium cooled lithium ceramic blanket module were done in several times to give more insight for the material and geometry parameters of intra-module structures. Therefore, the principles for neutronic design and the module level optimized parameters were produced, based on which the design of practical blanket modules planted in tokamak vacuum vessel was completed. In the end, the 3-D neutronic analysis for CFETR was done utilizing the MCNP code, in which the 11.25 degree sector model (consist of blanket modules, manifold, support plate, shield, divertor, vacuum vessel, thermal shield and TF coils) was generated with the McCad automated conversion tool from the reference CAD model for analysis, the bi-dimensional (radial and poloidal) neutron source map was plugged via general source definition card to stimulate the D-T fusion neutrons. The concerned neutronics parameters of CFETR, mainly including the tritium breeding ratio to characterize tritium self-sufficiency, the energy multiplication factor to characterize power generation, as well as, the inboard mid-plane radial profiles of neutron flux densities, helium production rate, displacement damage rate and the energy deposition to characterize the shielding performance, were produced.

In principle, the neutronics performance of CFETR with modular helium cooled lithium ceramic blanket is promising. The tritium breeding capability meets the design target and, by referring to that for ITER and the EU DEMO fusion power plant, the inboard mid-plane shielding is effective to fulfill the radiation design requirement of the superconducting TF-coils, resulting in a compulsory warm-up time interval of ∼2 FPY for TF-coils. The nuclear heating loads to other CFETR components were generated. As an outcome of this work, the applicability of McCad on CFETR neutronic modeling is demonstrated.

Copyright © 2017 by ASME
Topics: Ceramics , Helium , Lithium



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In