Full Content is available to subscribers

Subscribe/Learn More  >

Development of Security and Safety Fuel for Pu-Burner HTGR: Part 2 — Design Study of Fuel and Reactor Core

[+] Author Affiliations
Minoru Goto, Shohei Ueta, Jun Aihara, Yoshitomo Inaba, Yuji Fukaya, Yukio Tachibana

JAEA, Oarai, Japan

Koji Okamoto

University of Tokyo, Tokai, Japan

Paper No. ICONE25-67110, pp. V005T05A031; 6 pages
  • 2017 25th International Conference on Nuclear Engineering
  • Volume 5: Advanced and Next Generation Reactors, Fusion Technology; Codes, Standards, Conformity Assessment, Licensing, and Regulatory Issues
  • Shanghai, China, July 2–6, 2017
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5783-0
  • Copyright © 2017 by ASME


JAEA (Japan Atomic Energy Agency) has conducted feasibility studies of the fuel and of the reactor core for the plutonium-burner HTGR (High Temperature Gas-cooled Reactor). The increase of the internal pressure, which is caused by generations of CO gas and stable noble gases, is considered to be the one of the major causes of TRISO (TRI-structural ISO-tropic) fuel failure at high burn-up. The CO gas is generated by the chemical reaction of the graphite making up the buffer layer with the free-oxygen released from the fuel kernel by fission. The stable noble gases, which are fission products, are also released from the fuel kernel. Although it is considered very difficult to suppress the increase of the partial pressure of the stable noble gases because of its chemically inert nature, the increase of the CO gas partial pressure can be suppressed by reducing the free-oxygen mole concentration using a chemical reaction. ZrC acts an oxygen getter, which reduces the free-oxygen generated with fission reaction. An increase of the CO gas partial pressure with burn-up in a TRISO fuel is expected to be suppressed by coating ZrC on a fuel kernel. A PuO2-YSZ (Yttria Stabilized Zirconia) fuel kernel with a ZrC coating, which enhances safety, security and safeguard, namely: 3S-TRISO fuel, was proposed to introduce to the plutonium-burner HTGR. In this study, the efficiency of the ZrC coating as the free-oxygen getter under a HTGR temperature condition was examined based on a thermochemical calculation. A preliminary feasibility study on the 3S-TRISO fuel that enables to attain a high burn-up around 500 GWd/t was also conducted focusing on a fuel failure caused by an increase of the internal pressure. Additionally, a preliminary nuclear analysis was conducted for the plutonium-burner HTGR with a fuel shuffling in the radial direction. As a result, the thermochemical calculation result showed that all the amount of the free-oxygen is captured by a thin ZrC coating under 1600°C condition. The plutonium-burner HTGR will be designed to suppress fuel temperature to be lower than 1600°C under severe accident conditions, and hence it was confirmed that coating ZrC on the fuel kernel is very effective method to suppress the internal pressure. The internal pressure the 3S-TRISO fuel at 500 GWd/t is calculated to be lower than 60 MPa, which allows to prevent the fuel failure, and hence the feasibility of the 3S-TRISO fuel was also confirmed. Additionally, the results of the whole core burn-up calculations showed that the fuel shuffling in the radial direction allows to achieve the high burn-up around 500 GWd/t. It also showed that the temperature coefficient of reactivity is negative value during the rated power condition through the operation period.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In