Full Content is available to subscribers

Subscribe/Learn More  >

Status of MELCOR Sodium Models Development

[+] Author Affiliations
David L. Y. Louie, Larry L. Humphries

Sandia National Laboratories, Albuquerque, NM

Paper No. ICONE25-66524, pp. V005T05A017; 10 pages
  • 2017 25th International Conference on Nuclear Engineering
  • Volume 5: Advanced and Next Generation Reactors, Fusion Technology; Codes, Standards, Conformity Assessment, Licensing, and Regulatory Issues
  • Shanghai, China, July 2–6, 2017
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5783-0
  • Copyright © 2017 by ASME


A sodium coolant accident analysis code is necessary to provide regulators with a means of performing confirmatory analyses for future sodium reactor licensing submissions. MELCOR and CONTAIN, which have been employed by the U.S. Nuclear Regulatory Commission for light water reactor licensing, have been traditionally used for Level 2 and Level 3 probabilistic analyses as well as containment design basis accident analysis. To meet future regulatory needs, new models are being added to the MELCOR code for simulation of sodium reactor designs by integrating the existing models developed for separate effects codes into the MELCOR architecture. Sodium properties and equations of state, such as from the SAS4A code, have previously been implemented into MELCOR to replace the water properties and equation of state. Additional specific sodium-related models to address design basis accidents are now being implemented into MELCOR from CONTAIN-LMR. Although the codes are very different in the code architecture, the feasibility fit is being investigated, and the models for the sodium spray fire and the sodium pool fire have been integrated into MELCOR. A new package called Sodium Chemistry (NAC) has been added to MELCOR to handle all sodium related chemistry models for sodium reactor safety applications. Although MELCOR code requires the ambient condition to be above the freezing point of the coolant (e.g., sodium or water), the high relative freezing point of sodium requires MELCOR to handle situations, particularly far from the primary circuit, where the ambient temperatures are usually at room temperature. Because only a single coolant can be modeled in a problem at a time, any presence of water in the problem would be treated as a trace material, an aerosol, in MELCOR. This paper addresses and describe the integration of the sodium models from CONTAIN-LMR, and the testing of the sodium chemistry models in the NAC package of MELCOR that handles sodium type reactor accidents, using available sodium experiments on spray fire and pool fire. In addition, we describe the anticipated sodium models to be completed in this year, such as the atmospheric chemistry model and sodium-concrete interaction model. Code-to-code comparison between MELCOR and CONTAIN-LMR results, in addition to the experiment code validations, will be demonstrated in this year.

Copyright © 2017 by ASME
Topics: Sodium



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In