Full Content is available to subscribers

Subscribe/Learn More  >

Radioisotope Thermophotovoltaic Generator Design and Performance Estimates for Terrestrial Applications

[+] Author Affiliations
Xiawa Wang, Walker Chan, Veronika Stelmakh, Peter Fisher

Massachusetts Institute of Technology, Cambridge, MA

Paper No. ICONE25-66607, pp. V003T13A008; 9 pages
  • 2017 25th International Conference on Nuclear Engineering
  • Volume 3: Nuclear Fuel and Material, Reactor Physics and Transport Theory; Innovative Nuclear Power Plant Design and New Technology Application
  • Shanghai, China, July 2–6, 2017
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5781-6
  • Copyright © 2017 by ASME


This work provides the design methods and performance estimates of the radioisotope thermophotovoltaic system (RTPV) for terrestrial applications. The modeling is based on an experimentally tested prototype using two-dimensional high temperature photonic crystal to realize spectral control. The design efforts focus on the optimization of the system efficiency and contain the heat source number, the size of the energy conversion elements, the insulation configuration, and the heat sink design. An equivalent circuit model was developed for the thermal and electrical performances. Based on a specific output requirement, an optimized heat source number and energy conversion area can be computed for a certain cell type and insulation design. The selection and characterization of the low bandgap thermophotovoltaic (TPV) cells applicable to the generator are compared and discussed. The generator’s heat sink design uses extended fins and the performance is estimated based on the external operating conditions. Finally, the work provides a design example of a terrestrial RTPV generator with an output level of ∼40 W electrical power (We) using InGaAsSb cell, reaching an efficiency of 8.26%.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In