0

Full Content is available to subscribers

Subscribe/Learn More  >

Cycle Calculations of a Small-Scale Heat Removal System With Supercritical CO2 As Working Fluid

[+] Author Affiliations
Marcel Strätz, Jörg Starflinger, Rainer Mertz

University of Stuttgart, Stuttgart, Germany

Michael Seewald

GfS Gesellschaft für Simulatorschulung mbH, Essen, Germany

Sebastian Schuster, Dieter Brillert

University Duisburg-Essen, Duisburg, Germany

Paper No. ICONE25-66084, pp. V003T13A001; 7 pages
doi:10.1115/ICONE25-66084
From:
  • 2017 25th International Conference on Nuclear Engineering
  • Volume 3: Nuclear Fuel and Material, Reactor Physics and Transport Theory; Innovative Nuclear Power Plant Design and New Technology Application
  • Shanghai, China, July 2–6, 2017
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5781-6
  • Copyright © 2017 by ASME

abstract

In case of an accident in a nuclear power plant with combined initiating events, (loss of ultimate heat sink and station blackout) additional heat removal system could transfer the decay heat from the core to and diverse ultimate heat sink. On additional heat removal system, which is based upon a Brayton cycle with supercritical CO2 as working fluid, is currently investigated within an EU-funded project, sCO2-HeRo (Supercritical carbon dioxide heat removal system). It shall serve as a self-launching, self-propelling and self-sustaining decay heat removal system to be used in severe accident scenarios. Since a Brayton cycle produces more electric power that it consumes, the excess electric power can be used inside the power plant, e.g. recharging batteries. A small-scale demonstrator will be attached to the PWR glass model at Gesellschaft für Simulatorforschung GfS, Essen, Germany.

In order to design and build this small-scale model, cycle calculations are performed to determine the design parameters from which a layout can be derived.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In