Full Content is available to subscribers

Subscribe/Learn More  >

Refined Algorithm for Solving High-Order Harmonics of Multi Group Neutron Diffusion Equation

[+] Author Affiliations
Gaoxin Zhou, Zhi Gang

State Nuclear Power Research Institute, Beijing, China

Paper No. ICONE25-66098, pp. V003T02A004; 5 pages
  • 2017 25th International Conference on Nuclear Engineering
  • Volume 3: Nuclear Fuel and Material, Reactor Physics and Transport Theory; Innovative Nuclear Power Plant Design and New Technology Application
  • Shanghai, China, July 2–6, 2017
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5781-6
  • Copyright © 2017 by ASME


In recent years, high order harmonic (or eigenvector) of neutron diffusion equation has been widely used in on-line monitoring system of reactor power. There are two kinds of calculation method to solve the equation: corrected power iteration method and Krylov subspace methods. Fu Li used the corrected power iteration method. When solving for the ith harmonic, it tries to eliminate the influence of the front harmonics using the orthogonality of the harmonic function. But its convergence speed depends on the occupation ratio. When the dominant ratios equal to 1 or close to 1, convergence speed of fixed source iteration method is slow or convergence can’t be achieved. Another method is the Krylov subspace method, the main idea of this method is to project the eigenvalue and eigenvector of large-scale matrix to a small one. Then we can solve the small matrix eigenvalue and eigenvector to get the large ones. In recent years, the restart Arnoldi method emerged as a development of Krylov subspace method. The method uses continuous reboot Arnoldi decomposition, limiting expanding subspace, and the orthogonality of the subspace is guaranteed using orthogonalization method.

This paper studied the refined algorithms, a method based on the Krylov subspace method of solving eigenvalue problem for large sparse matrix of neutron diffusion equation. Two improvements have been made for a restarted Arnoldi method. One is that using an ingenious linear combination of the refined Ritz vector forms an initial vector and then generates a new Krylov subspace. Another is that retaining the refined Ritz vector in the new subspace, called, augmented Krylov subspace. This way retains useful information and makes the resulting algorithm converge faster. Several numerical examples are the new algorithm with the implicitly restart Arnoldi algorithm (IRA) and the implicitly restarted refined Arnoldi algorithm (IRRA). Numerical results confirm efficiency of the new algorithm.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In